
Fakultät für Philologie
Sprachwissenschaftliches Institut

Spelling normalization: How far can you get without context?
Marcel Bollmann, Stefanie Dipper, Florian Petran

Steps common to both models

▪ MGIZA. https: //github. com/moses-smt/mgiza

▪ Ilya Sutskever, Oriol Vinyals, & Quoc V. Le (2014) . Sequence to Sequence Learning with Neural Networks.

Advances in Neural Information Processing Systems (NIPS) , pp. 3104–3112. Montréal, Canada.

▪ Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, & Yoshua

Bengio. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. JMLR Workshop and

Conference Proceedings: Proceedings of the 32nd International Conference on Machine Learning,

pp. 2048–2057. Lille, France.

The research reported here was financed by Deutsche

Forschungsgemeinschaft (DFG) , Grant No. DI 1558/4.

▪ R. Harald Baayen, Richard Piepenbrock, & Léon Gulikers (1995) . The CELEXLexical Database (Release 2)

(CD-ROM) . Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA.

▪ Marcel Bollmann (2012) . (Semi-)automatic normalization ofhistorical texts using distances measures and the

Norma tool. Proceedings of the Second Workshop on Annotation of Corpora for Research in the Humanities

(ACRH-2) . Lisbon, Portugal.

▪ François Chollet (2015) . Keras. https: //github. com/fchollet/keras

▪ Diederik P. Kingma & Jimmy Lei Ba (2015) . Adam: A Method for Stochastic Optimization. The International

Conference on Learning Representations (ICLR) . San Diego, CA.

huylet huilt 12
huylt huil 3
huylt huilt 2
huys huis 1441
huys huis_van 130
huys huizes 15
huys-besorger huisbezorger 1
.

Bochum-2: Encoder–decoder neural network architecture (Similar to Sutskever et al., 2014)

▪ Look up words in a translation lexicon

▪ If found, replace them with the learned mapping

▪ Context-free normalization

► Input is always a single wordform, without surrounding words as context

► Cannot resolve certain ambiguities or perform merging of input words

▪ Capitalization

► Not explicitly modelled; input is lower-cased for both models

► Simple heuristic: Capitalize sentence beginnings and single-letter

abbreviations

► We also tried truecasing using a statistical model learned from parts of

Wikipedia, but found it more problematic (due to noisy output) than useful

▪ Punctuation

► Not explicitly modelled (requires context information)

► Removed before normalization, then re-inserted from original text afterwards

▪ Training data

► We train only on normalizing from the 1637 to the 1888 bible translation

► Sentence pairs are aligned using MGIZA to generate word pairs for training

► Resolve 1:n alignments using the underscore notation:

► Merge unaligned words with their neighbours and try to find best split

by using Levenshtein alignment on characters:

▪ Lexical filtering

► Restrict model output by words in a lexicon

► Lexicon: tokens from 1888 bible + Dutch part of CELEX (Baayen et al. , 1995)

hyse
hij

ze
hyse hij _ze

so

lange
zolang so zo

lange lang

Bochum-1: The Norma tool (Bollmann, 2012)

1 Lexical mapping

▪ Learn replacement rules from the training data

▪ Apply the most probable rules from left to right

2 Rule-based algorithm

▪ Learn Levenshtein weights from the training data

▪ Find lexicon word with the lowest distance

3 Weighted Levenshtein distance

y � ij / h _ # 10005
hy � ij / g _ # 8382
h � h / # _ u 2763
y � i / u _ s 2549
y � y / g _ p 729
y � ԑ / u _ r 86
uy � ԑ / # _ t 41

.

. . .
huil
huilt
huis
huize
huizen
hysop
. . .

huys

Majority voting

▪ Ties are resolved in order: Mapper > Rule-based > Weighted Levenshtein

g o d t

<START> g o d

g o d <END>

E
N
C
O
D
E
R

D
E
C
O
D
E
R

Embedding layer

Embedding layer

Bi-directional LSTM

Attention component

Attentional LSTM

Prediction layer

▪ Implemented using Keras (Chollet, 2015) and lots of custom code

▪ Encoder

► Embedding layer maps characters to vectors

► Bi-directional LSTM encodes the input sequence

► Encoder output is fed into the decoder's hidden state using an

attention mechanism (closely following Xu et al. , 2015)

▪ Decoder

► Reads partially predicted sequence (or <START> at the beginning) ,

predicts next output character

► Embedding layer maps characters to vectors

► Attentional LSTM reads input characters, calculates new hidden state

by combining old hidden state and the encoded input sequence

► Prediction layer generates prediction, used as input for next timestep

▪ Beam-search decoding

► Keep 5 best predictions per timestep

► Filter possible beams using the lexicon

▪ Hyperparameters

► Number of neurons in each layer is 256

► Dropout = 0.2 for the LSTM inputs

► Trained in mini-batches of 1000 tokens for a total of 10 epochs

► Used Adam algorithm (Kingma & Ba, 2015) with learning rate = 0.003

