RUHR-UNIVERSITÄT BOCHUM

RUB

Fakultät für Philologie Sprachwissenschaftliches Institut

Spelling normalization: How far can you get without context?

Marcel Bollmann, Stefanie Dipper, Florian Petran

Steps common to both models

- Context-free normalization
 - Input is always a single wordform, without surrounding words as context
 - Cannot resolve certain ambiguities or perform merging of input words

Capitalization

Not explicitly modelled; input is lower-cased for both models

Training data

- We train only on normalizing from the 1637 to the 1888 bible translation
- Sentence pairs are aligned using MGIZA to generate word pairs for training
- Resolve 1:n alignments using the underscore notation:

- Simple heuristic: Capitalize sentence beginnings and single-letter abbreviations
- We also tried truecasing using a statistical model learned from parts of Wikipedia, but found it more problematic (due to noisy output) than useful

Punctuation

- Not explicitly modelled (requires context information)
- Removed before normalization, then re-inserted from original text afterwards

Bochum-1: The Norma tool (Bollmann, 2012)

- Lexical mapping
- Look up words in a translation lexicon
- If found, replace them with the learned mapping

huylet	huilt	12
huylt	huil	3
huylt	huilt	2
huys	huis	1441
huys	huis_van	130
huys	huizes	15
huys-besorger	huisbezorger	1
• • •	• • •	• • •

2 Rule-based algorithm

- Learn replacement rules from the training data
- Apply the most probable rules from left to right

У	\rightarrow	ij/	h _	#	10005
hy	\longrightarrow	ij/	g _	#	8382
h	\longrightarrow	h /	# _	u	2763
У	\longrightarrow	i /	u _	S	2549
У	\longrightarrow	y /	g _	р	729
У	\longrightarrow	ε /	u _	r	86
uy	\longrightarrow	ε /	# _	t	41
	• • •				• • •

Merge unaligned words with their neighbours and try to find best split by using Levenshtein alignment on characters:

- Lexical filtering
 - Restrict model output by words in a lexicon
 - Lexicon: tokens from 1888 bible + Dutch part of CELEX (Baayen et al., 1995)

Weighted Levenshtein distance

- Learn Levenshtein weights from the training data
- Find lexicon word with the lowest distance

Majority voting

Ties are resolved in order: Mapper > Rule-based > Weighted Levenshtein

Bochum-2: Encoder-decoder neural network architecture (Similar to Sutskever et al., 2014)

Implemented using Keras (Chollet, 2015) and lots of custom code

Encoder

- Embedding layer maps characters to vectors
- Bi-directional LSTM encodes the input sequence
- Encoder output is fed into the decoder's hidden state using an attention mechanism (closely following Xu et al., 2015)

Decoder

- Reads partially predicted sequence (or <START> at the beginning), predicts next output character
- Embedding layer maps characters to vectors
- Attentional LSTM reads input characters, calculates new hidden state by combining old hidden state and the encoded input sequence
- Prediction layer generates prediction, used as input for next timestep

Beam-search decoding

0 C ш

2

ш

- Keep 5 best predictions per timestep
- Filter possible beams using the lexicon

Hyperparameters

- Number of neurons in each layer is 256
- Dropout = 0.2 for the LSTM inputs
- Trained in mini-batches of 1000 tokens for a total of 10 epochs
- Used Adam algorithm (Kingma & Ba, 2015) with learning rate = 0.003
- R. Harald Baayen, Richard Piepenbrock, & Léon Gulikers (1995). *The CELEX Lexical Database (Release 2)* (CD-ROM). Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA.
- Marcel Bollmann (2012). (Semi-)automatic normalization of historical texts using distances measures and the Norma tool. Proceedings of the Second Workshop on Annotation of Corpora for Research in the Humanities (ACRH-2). Lisbon, Portugal.
- François Chollet (2015). *Keras*. https://github.com/fchollet/keras
- Diederik P. Kingma & Jimmy Lei Ba (2015). Adam: A Method for Stochastic Optimization. The International Conference on Learning Representations (ICLR). San Diego, CA.

MGIZA. https://github.com/moses-smt/mgiza

- Ilya Sutskever, Oriol Vinyals, & Quoc V. Le (2014). Sequence to Sequence Learning with Neural Networks. Advances in Neural Information Processing Systems (NIPS), pp. 3104–3112. Montréal, Canada.
- Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, & Yoshua Bengio. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. JMLR Workshop and Conference Proceedings: Proceedings of the 32nd International Conference on Machine Learning, pp. 2048–2057. Lille, France.

The research reported here was financed by Deutsche Forschungsgemeinschaft (DFG), Grant No. DI 1558/4.

